57 research outputs found

    Activation of D1 Dopamine Receptors Induces Emergence from Isoflurane General Anesthesia

    Get PDF
    Background: A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. Methods: In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose–response study to test for chloro-APB–induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiologic changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. Results: Chloro-APB decreased median time to emergence from 330 to 50 s. The median difference in time to emergence between the saline control group (n = 6) and the chloro-APB group (n = 6) was 222 s (95% CI: 77–534 s, Mann–Whitney test). This difference was statistically significant (P = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram δ power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. Conclusions: Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia and produces behavioral and neurophysiologic evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor–mediated arousal mechanism is sufficient to induce emergence from isoflurane general anesthesia.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K08-GM094394)Massachusetts General Hospital. Dept. of Anesthesia and Critical Car

    A state-space model of the burst suppression ratio

    Get PDF
    Burst suppression is an electroencephalogram pattern observed in states of severely reduced brain activity, such as general anesthesia, hypothermia and anoxic brain injuries. The burst suppression ratio (BSR), defined as the fraction of EEG spent in suppression per epoch, is the standard quantitative measure used to characterize burst suppression. We present a state space model to compute a dynamic estimate of the BSR as the instantaneous probability of suppression. We estimate the model using an approximate EM algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia. Our approach removes the need to artificially average the ratio over long epochs and allows us to make formal statistical comparisons of burst activity at different time points. Our state-space model suggests a more principled way to analyze this key EEG feature that may offer more informative assessments of its associated brain state.Massachusetts General Hospital. Dept. of Anesthesia and Critical CareNational Institutes of Health (U.S.) (Grant DP1 OD003646-01)National Institutes of Health (U.S.) (Grant R01 MH071847)National Institutes of Health (U.S.) (Grant K08 GM094394

    Active Emergence from Propofol General Anesthesia Is Induced by Methylphenidate

    Get PDF
    Background: A recent study showed that methylphenidate induces emergence from isoflurane general anesthesia. Isoflurane and propofol are general anesthetics that may have distinct molecular mechanisms of action. The objective of this study was to test the hypothesis that methylphenidate actively induces emergence from propofol general anesthesia. Methods: Using adult rats, the effect of methylphenidate on time to emergence after a single bolus of propofol was determined. The ability of methylphenidate to restore righting during a continuous target-controlled infusion (TCI) of propofol was also tested. In a separate group of rats, a TCI of propofol was established and spectral analysis was performed on electroencephalogram recordings taken before and after methylphenidate administration. Results: Methylphenidate decreased median time to emergence after a single dose of propofol from 735 s (95% CI: 598–897 s, n = 6) to 448 s (95% CI: 371–495 s, n = 6). The difference was statistically significant (P = 0.0051). During continuous propofol anesthesia with a median final target plasma concentration of 4.0 μg/ml (95% CI: 3.2–4.6, n = 6), none of the rats exhibited purposeful movements after injection of normal saline. After methylphenidate, however, all six rats promptly exhibited arousal and had restoration of righting with a median time of 82 s (95% CI: 30–166 s). Spectral analysis of electroencephalogram data demonstrated a shift in peak power from δ (less than 4 Hz) to θ (4–8 Hz) and β (12–30 Hz) after administration of methylphenidate, indicating arousal in 4/4 rats. Conclusions: Methylphenidate decreases time to emergence after a single dose of propofol, and induces emergence during continuous propofol anesthesia in rats. Further study is warranted to test the hypothesis that methylphenidate induces emergence from propofol general anesthesia in humans.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K08-GM094394)Massachusetts General Hospital. Dept. of Anesthesia and Critical Car

    A Brain-Machine Interface for Control of Medically-Induced Coma

    Get PDF
    Medically-induced coma is a drug-induced state of profound brain inactivation and unconsciousness used to treat refractory intracranial hypertension and to manage treatment-resistant epilepsy. The state of coma is achieved by continually monitoring the patient's brain activity with an electroencephalogram (EEG) and manually titrating the anesthetic infusion rate to maintain a specified level of burst suppression, an EEG marker of profound brain inactivation in which bursts of electrical activity alternate with periods of quiescence or suppression. The medical coma is often required for several days. A more rational approach would be to implement a brain-machine interface (BMI) that monitors the EEG and adjusts the anesthetic infusion rate in real time to maintain the specified target level of burst suppression. We used a stochastic control framework to develop a BMI to control medically-induced coma in a rodent model. The BMI controlled an EEG-guided closed-loop infusion of the anesthetic propofol to maintain precisely specified dynamic target levels of burst suppression. We used as the control signal the burst suppression probability (BSP), the brain's instantaneous probability of being in the suppressed state. We characterized the EEG response to propofol using a two-dimensional linear compartment model and estimated the model parameters specific to each animal prior to initiating control. We derived a recursive Bayesian binary filter algorithm to compute the BSP from the EEG and controllers using a linear-quadratic-regulator and a model-predictive control strategy. Both controllers used the estimated BSP as feedback. The BMI accurately controlled burst suppression in individual rodents across dynamic target trajectories, and enabled prompt transitions between target levels while avoiding both undershoot and overshoot. The median performance error for the BMI was 3.6%, the median bias was -1.4% and the overall posterior probability of reliable control was 1 (95% Bayesian credibility interval of [0.87, 1.0]). A BMI can maintain reliable and accurate real-time control of medically-induced coma in a rodent model suggesting this strategy could be applied in patient care.National Institutes of Health (U.S.) (Director's Transformative Award R01 GM104948)National Institutes of Health (U.S.) (Pioneer Award DP1-OD003646)National Institutes of Health (U.S.) (NIH K08-GM094394)Massachusetts General Hospital. Dept. of Anesthesia and Critical Car

    Burst suppression probability algorithms: state-space methods for tracking EEG burst suppression

    Get PDF
    Objective. Burst suppression is an electroencephalogram pattern in which bursts of electrical activity alternate with an isoelectric state. This pattern is commonly seen in states of severely reduced brain activity such as profound general anesthesia, anoxic brain injuries, hypothermia and certain developmental disorders. Devising accurate, reliable ways to quantify burst suppression is an important clinical and research problem. Although thresholding and segmentation algorithms readily identify burst suppression periods, analysis algorithms require long intervals of data to characterize burst suppression at a given time and provide no framework for statistical inference. Approach. We introduce the concept of the burst suppression probability (BSP) to define the brain's instantaneous propensity of being in the suppressed state. To conduct dynamic analyses of burst suppression we propose a state-space model in which the observation process is a binomial model and the state equation is a Gaussian random walk. We estimate the model using an approximate expectation maximization algorithm and illustrate its application in the analysis of rodent burst suppression recordings under general anesthesia and a patient during induction of controlled hypothermia. Main result. The BSP algorithms track burst suppression on a second-to-second time scale, and make possible formal statistical comparisons of burst suppression at different times. Significance. The state-space approach suggests a principled and informative way to analyze burst suppression that can be used to monitor, and eventually to control, the brain states of patients in the operating room and in the intensive care unit.National Institutes of Health (U.S.) (Award DP1-OD003646)National Institutes of Health (U.S.) (Award DP2-OD006454)National Institutes of Health (U.S.) (Award K08-GM094394)Burroughs Wellcome Fund (Award 1010625

    Propofol and sevoflurane induce distinct burst suppression patterns in rats

    Get PDF
    Burst suppression is an EEG pattern characterized by alternating periods of high-amplitude activity (bursts) and relatively low amplitude activity (suppressions). Burst suppression can arise from several different pathological conditions, as well as from general anesthesia. Here we review current algorithms that are used to quantify burst suppression, its various etiologies, and possible underlying mechanisms. We then review clinical applications of anesthetic-induced burst suppression. Finally, we report the results of our new study showing clear electrophysiological differences in burst suppression patterns induced by two common general anesthetics, sevoflurane and propofol. Our data suggest that the circuit mechanisms that generate burst suppression activity may differ among general anesthetics

    Correcting for serial dependence in studies of respiratory dynamics

    Get PDF
    Understanding the physiological impact of drug treatments on patients is important in assessing their performance and determining possible side effects. While this effect might be best determined in individual subjects, conventional methods assess treatment performance by averaging a physiological measure of interest before and after drug administration for n subjects. Summarizing large numbers of time-series observations in two means for each subject in this way results in significant information loss. Treatment effect can instead be analyzed in individual subjects. Because serial dependence of observations from the same animal must then be considered, methods that assume independence of observations, such as the t-test and z-test, cannot be used. We address this issue in the case of respiratory data collected from anesthetized rats that were injected with a dopamine agonist. In order to accurately assess treatment effect in time-series data, we begin by formulating a method of conditional likelihood maximization to estimate the parameters of a first-order autoregressive (AR) process. We show that treatment effect of a dopamine agonist can be determined while incorporating serial effect into the analysis. In addition, while maximum likelihood estimators of a large sample with independent observations may converge to an asymptotically normal distribution, this result of large sample theory may not hold when observations are serially dependent. In this case, a parametric bootstrap comparison can be used to approximate an appropriate measure of uncertainty.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K08-GM094394)National Institutes of Health (U.S.) (Grant K08-GM083216

    Methylphenidate Actively Induces Emergence from General Anesthesia

    Get PDF
    Background: Although accumulating evidence suggests that arousal pathways in the brain play important roles in emergence from general anesthesia, the roles of monoaminergic arousal circuits are unclear. In this study, the authors tested the hypothesis that methylphenidate (an inhibitor of dopamine and norepinephrine transporters) induces emergence from isoflurane general anesthesia. Methods: Using adult rats, the authors tested the effect of intravenous methylphenidate on time to emergence from isoflurane general anesthesia. They then performed experiments to test separately for methylphenidate-induced changes in arousal and changes in minute ventilation. A dose–response study was performed to test for methylphenidate-induced restoration of righting during continuous isoflurane general anesthesia. Surface electroencephalogram recordings were performed to observe neurophysiological changes. Plethysmography recordings and arterial blood gas analysis were performed to assess methylphenidate-induced changes in respiratory function. Intravenous droperidol was administered to test for inhibition of methylphenidate's actions. Results: Methylphenidate decreased median time to emergence from 280 to 91 s. The median difference in time to emergence without methylphenidate compared with administration of methylphenidate was 200 [155–331] s (median, [95% CI]). During continuous inhalation of isoflurane, methylphenidate induced return of righting in a dose-dependent manner, induced a shift in electroencephalogram power from delta (less than 4 Hz) to theta (4–8 Hz), and induced an increase in minute ventilation. Administration of intravenous droperidol (0.5 mg/kg) before intravenous methylphenidate (5 mg/kg) largely inhibited methylphenidate-induced emergence behavior, electroencephalogram changes, and changes in minute ventilation. Conclusions: Methylphenidate actively induces emergence from isoflurane general anesthesia by increasing arousal and respiratory drive, possibly through activation of dopaminergic and adrenergic arousal circuits. The authors' findings suggest that methylphenidate may be useful clinically as an agent to reverse general anesthetic-induced unconsciousness and respiratory depression at the end of surgery.National Institutes of Health (U.S.) (Grant DP1-OD003646)National Institutes of Health (U.S.) (Grant K08-GM094394)National Institutes of Health (U.S.) (Grant K08-GM083216)Massachusetts General Hospital. Dept. of Anesthesia and Critical Car

    Sevoflurane Induces Coherent Slow-Delta Oscillations in Rats

    Get PDF
    Although general anesthetics are routinely administered to surgical patients to induce loss of consciousness, the mechanisms underlying anesthetic-induced unconsciousness are not fully understood. In rats, we characterized changes in the extradural EEG and intracranial local field potentials (LFPs) within the prefrontal cortex (PFC), parietal cortex (PC), and central thalamus (CT) in response to progressively higher doses of the inhaled anesthetic sevoflurane. During induction with a low dose of sevoflurane, beta/low gamma (12–40 Hz) power increased in the frontal EEG and PFC, PC and CT LFPs, and PFC–CT and PFC–PFC LFP beta/low gamma coherence increased. Loss of movement (LOM) coincided with an abrupt decrease in beta/low gamma PFC–CT LFP coherence. Following LOM, cortically coherent slow-delta (0.1–4 Hz) oscillations were observed in the frontal EEG and PFC, PC and CT LFPs. At higher doses of sevoflurane sufficient to induce loss of the righting reflex, coherent slow-delta oscillations were dominant in the frontal EEG and PFC, PC and CT LFPs. Dynamics similar to those observed during induction were observed as animals emerged from sevoflurane anesthesia. We conclude that the rat is a useful animal model for sevoflurane-induced EEG oscillations in humans, and that coherent slow-delta oscillations are a correlate of sevoflurane-induced behavioral arrest and loss of righting in rats.National Institutes of Health (U.S.) (Grant PO1-GM118269)National Institutes of Health (U.S.) (Grant TR01-GM104948

    Optogenetic activation of dopamine neurons in the ventral tegmental area induces reanimation from general anesthesia

    Get PDF
    Dopamine (DA) promotes wakefulness, and DA transporter inhibitors such as dextroamphetamine and methylphenidate are effective for increasing arousal and inducing reanimation, or active emergence from general anesthesia. DA neurons in the ventral tegmental area (VTA) are involved in reward processing, motivation, emotion, reinforcement, and cognition, but their role in regulating wakefulness is less clear. The current study was performed to test the hypothesis that selective optogenetic activation of VTA DA neurons is sufficient to induce arousal from an unconscious, anesthetized state. Floxed-inverse (FLEX)-Channelrhodopsin2 (ChR2) expression was targeted to VTA DA neurons in DA transporter (DAT)-cre mice (ChR2+ group; n = 6). Optical VTA stimulation in ChR2+ mice during continuous, steady-state general anesthesia (CSSGA) with isoflurane produced behavioral and EEG evidence of arousal and restored the righting reflex in 6/6 mice. Pretreatment with the D1 receptor antagonist SCH-23390 before optical VTA stimulation inhibited the arousal responses and restoration of righting in 6/6 ChR2+ mice. In control DAT-cre mice, the VTA was targeted with a viral vector lacking the ChR2 gene (ChR2− group; n = 5). VTA optical stimulation in ChR2− mice did not restore righting or produce EEG changes during isoflurane CSSGA in 5/5 mice. These results provide compelling evidence that selective stimulation of VTA DA neurons is sufficient to induce the transition from an anesthetized, unconscious state to an awake state, suggesting critical involvement in behavioral arousal.United States. National Institutes of Health (TR01-GM104948)United States. National Institutes of Health (T32-GM07592
    • …
    corecore